
Conception of Real-Time Flood Forecasting System

Approach Based on Anytime Techniques
El Mabrouk Marouane, Cherrat Loubna, Ezziyyani Mostafa, Essaaidi Mohammad

laSIT Physics, UAE

 Tetuan, Morocco

elmabroukmarouane@gmail.com

cherrat81@yahoo.fr

laSIT Physics, UAE

 Tetuan, Morocco

ezziyyani@gmail.com

essaaidi@ieee.com

Abstract— In a Decision Support System (DSS), a computer

system must allow the decision maker to make the best possible

decision, often before a given time. The objective of our project is

to extend the notion of flood forecasting in an environment

constrained by time, it means to consider the real-time aspects of

a forecast DSS. To design such a system, we opted for the use of

“Anytime techniques” that aimed at giving information systems

the possibility to provide results which quality and accuracy

evolve according to a given time. In this paper, we suggest

ANY2FC (Anytime Flood Forecasting), a model of real-time

flood forecasting based on Anytime techniques.

Keywords— flood ; forecasting ; real-time ; decision tree ;

machine Learning ; Anytime algorithm.

I. INTRODUCTION

The growth of natural and technological hazards is a

worldwide phenomenon that comes as a result of the

industrialization and the increasing density of occupation of

risk areas, prone to hazards or hazardous events. Risks,

therefore, pose a global challenge for the future and they’re

one of the major problems that sustainable development may

face.

In terms of natural hazards, Morocco, by its geographical

location, is exposed to climatic, meteorological, geological and

biological changes which may lead to major risks such as

floods, flash floods, earthquakes and landslides etc.

 Here comes the need for a kind of decision support in

doing the real-time flood forecasting which may give the

opportunity to decide before the normal end of treatment

because the current algorithms don’t provide the answer until

the end of treatment. The former will ensure the quality of the

decision accuracy of data, the speed of learning time and the

execution and response. Therefore, in this paper, we propose a

new algorithm that optimizes the execution time, the precision

of the decision and response time.We based our approach on

Anytime algorithms to produce partial decisions before the end

of treatment trees.

II. STATE OF ART OF THE ALGORITHMS OF CONSTRUCTING THE

DECISION TREES

The majority of algorithms dealing with decision trees

construction follow the same principles; with exceptions

concerning the ability of each to provide binary trees or n-ary,

the processing capacity of input attributes in terms of density

and quality of accuracy.

Some algorithms are characterized by the rapidity of

providing answers on small samples such as CART, some are

characterized by quick decisions regarding means samples

such as C4.5 and ID3 while others are characterized by their

rapidity of large samples as CHAID.

The problem of these algorithms is that their performance

decreases when the size of the database processed and the

number of classes increase.

In the next section, we present the basic decision

algorithms make in literature.

A. Classification and Regression Trees (CART)

CART (Classification and Regression Trees), is

characterized by the fact that it constructs binary trees, namely
each internal node has exactly two outgoing edges whereas
both ID3, C4.5 algorithms generate the decision trees with
variable branches per node. CART is unique from other
Hunt’s based algorithm as it is also used for regression
analysis with the help of regression trees. The regression
analysis feature is used in forecasting a dependent variable
(result) given a set of predictor variables over a given period
of time. The CART decision tree is a binary recursive
partitioning procedure capable of processing continuous and
nominal attributes both as targets and predictors. In CART
trees are grown, using genie index for splitting procedure, to a
maximum size without the use of a stopping rule and then
pruned back (essentially split by split) to the root via cost-
complexity pruning. The CART mechanism is intended to
produce not one, but a sequence of nested pruned trees, all of
which are candidate optimal trees. The CART mechanism

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.1, pp. 207-211, 2013

Copyright - IPCO

PC
Typewriter
207

includes automatic (optional) class balancing, automatic
missing value handling, and allows for cost-sensitive learning,
dynamic feature construction, and probability tree estimation.

B. Iterative Dichotomiser 3 (ID3)

ID3 (Iterative Dichotomized) algorithm is based on the

Concept of Learning System (CLS) algorithm. CLS algorithm

is the basic algorithm for decision tree learning. The tree

growth phase of CLS is the matter of choosing attribute to test

each node by the trainer. ID3 improves CLS by adding a

heuristic for attribute selection. ID3 is based on Hunt’s

algorithm and is implemented serially. This algorithm

recursively partitions the training dataset till the record sets

belong to the class label using depth first greedy technique. In

growth phase of the tree construction, this algorithm uses

information gain, an entropy based measure, to select the best

splitting attribute, and the attribute with the highest

information gain is selected as the splitting one. ID3 doesn’t

give accurate result when there is too much noise or details in

the training data set, thus an intensive pre-processing of data

is carried out before building a decision tree model with ID3.

One of the main drawbacks of ID3 is that the measure Gain

used tends to favor attributes with a large number of distinct

values. It accepts only categorical attributes in building a tree

model from which algorithm generates various branches per

node.

C. C4.5

C4.5 algorithm is an improved version of ID3, it uses

Gain Ratio as a splitting criteria, instead of taking gain in ID3

algorithm for splitting criteria [14] in tree growth phase.

Hence C4.5 is an evolution of ID3. This algorithm handles

both continuous and discrete attributes- In order to handle

continuous attributes, C4.5 creates a threshold and then splits

the list into those whose attribute value is above the threshold

and those that are less than or equal to it. Like ID3 the data is

sorted at every node of the tree in order to determine the best

splitting attribute. The splitting ceases when the number of

instances to be split is below a certain threshold. The main

advantages of C4.5 is when building a decision tree, C4.5 can

deal with datasets that have patterns with unknown attribute

values. C4.5 can also deal with the case of attributes with

continuous domains by discretization. This algorithm handles

training data with attribute values by allowing attribute values

to be marked as missing. Missing attribute values are simply

not used in gain and entropy calculations. It has an enhanced

method of tree pruning that reduces misclassification errors

due to noise or too much detail in the training data set.

D. Scalable Parallelizable Induction of decision Tree

algorithm (SPRINT)

SPRINT (Scalable Parallelizable Induction of decision

Tree algorithm) was introduced by Shafer et al, 1996. It is a
fast, scalable decision tree classifier. It is not based on Hunt’s

algorithm in constructing the decision tree, rather it partitions
the training data set recursively using breadth-first greedy
technique until each partition belong to the same leaf node or
class (Anyanwu et al, 2009 and Shafer et al, 1996). It is an
enhancement of SLIQ as it can be implemented in both serial
and parallel pattern for good data placement andload
balancing (Shafer et al, 1996). In this paper we will focus on
the serial implementation of SPRINT. Like SLIQ it uses one
time sort of the data items and it has no restriction on the input
data size. Unlike SLIQ it uses two data structures: attribute list
and histogram which is not memory resident making SPRINT
suitable for large data set, thus it removes all the data memory
restrictions on data (Shafer et al, 1996). It handles both
continuous and categorical attributes.

III. EXPERIMENTAL RESULTS AND COMPARATIVE STUDIES

A. Study domain

To compare the algorithm’s performance of construction

of the decisions trees, we conducted five experiments, each

time increased the number of records, the number of classes

and the number of attributes in order to identify problems that

may appears during execution. Here is the table that shows the

experiences already realized.

TABLE I. STATLOG AREA

 No. of attributes No. of classes No. of records

E1 24 2 270

E2 11 4 690

E3 8 2 753

E4 6 2 1000

E5 4 7 10500

B. Results

TABLE II. EXECUTION TIME TO BUILD MODEL

 ID3 CART C4.5 SPRINT

E1 0.12secs 0.61secs 0.05secs 0.03secs

E2 0.31secs 1.64secs 0.23secs 0.15secs

E3 0.47secs 2.17secs 0.35secs 0.26secs

E4 1.08secs 11.41secs 0.52secs 0.41secs

E5 2.08secs 38.31secs 1.17secs 0.89secs

TABLE III. CLASSIFICATION ACCURACY

 ID3 CART C4.5 SPRINT

E1 35.2% 56.67% 76.7% 80%

E2 54.3% 65% 66.5% 67%

E3 32.1 % 70 % 69.2 % 70 %

E4 71.5 % 85.4 % 84.2 % 85.8 %

E5 99.2 % 94 % 98.00 % 99.63 %

PC
Typewriter
208

Table II shows that SPRINT classifiers have the fastest

execution time among all the classifiers, regardless of the

class size, number of attributes and records of the data sets

volume. This is closely followed by C4.5. The table also

showed that execution time for ID3 is faster than CAR.

However, CART is preferred by researches and scientists as it

handles both categorical and continuous attributes while ID3

does not.

Table III shows that SPRINT classifier has the highest

classification accuracy among all the classifiers, this is

followed by C4.5. The class size, attribute number and record

number do not affect the classification accuracy of SPRINT

and C4.5 compared to other classifiers. The classification

accuracy of the ID3 and CART classifiers depends to a large

extent on the class size, attribute number and record number

of the data sets.

As shown in Table III for a large data set, the classification

accuracy of ID3 is better than that of CART as ID3 has a high

accuracy for large data that have been pre-processed and

loaded into the memory at the same time. But for small-

medium data, the classification accuracy of CART is more

accurate than that of ID3.

C. Synthesis

Fig. 1. Execution Time and Number of Records

Fig. 2. Execution Time and Number of Attributes

Figure 1. shows that for all the classifiers, the execution

time increases as the number of records increases. The steady

portion of the graph is the effect of varying the number of

attributes of the classifiers. Also Figure 2. shows that the

execution time (time to build the model) of the classifiers

decreases as the attributes of the classifiers increases and

becomes steady at some point, due to the change in the

number of records of the data sets and also class size change.

IV. ANY2FC (ANYTIME FLOOD FORECASTING) MODEL

The algorithms of construction of the decision trees

existing in the literature requires the end of learning (the end

of construction of the tree) to give a decision, which according

to the experimental studies already conducted, as the number

of records and classes increases, the execution time also

increases, hence the necessity to stop the construction and

give partial decisions which may be the final one, is essential.

Anytime algorithms provide us this possibility.

A. Anytime algorithms

Anytime algorithm is an algorithm that can find a valid

solution to a problem even if it's interrupted at any time before

it ends. The algorithm is expected to find better solutions as

long as it keeps running. Most algorithms run to completion:

they provide a single answer after performing some fixed

amount of computation.

However, in some cases, the user may wish to terminate

the algorithm prior to completion. The amount of the

computation required may be substantial, for example, and

computational resources might need to be reallocated. Most

algorithms either run to completion or they provide no useful

solution information. Anytime algorithms, however, are able

to return a partial answer, according to the quality which

depends on the amount of computation they were able to

perform. The answer generated by anytime algorithms is an

approximation of the correct answer.

B. New proposed Model ANY2FC

According to the synthesis already presented on the

experimental study, the execution time of the algorithms

increases when the number of records is larger and the number

of attributes is smaller.

Projecting that’s already seen on our application domain

which is flooding, according to the large number of records

with a small number of attributes in this scope, you can’t use

any of the existing algorithms in the literature, so you should

have an optimal solution that takes into consideration these

two constraints. Here comes the need to suggest a new

algorithm which is based on the latter. In the following section,

we present the ANY2FC Model for real-time forecasting of

floods.

PC
Typewriter
209

ANY2FC (Anytime Flood Forecasting) is a model based

on the Anytime’s concept to interrupt the treatment before its

normal end in order to provide a decision about the impact of

flooding. The quality of the decision depends on the quality of

the precised shaft portion built in order to save execution time

and response to lead to the notion of real-time forecasting.

This model will be based on a parameter called the cost of

importance of a factor. Factors are the parameters leading to

the incidence of flooding. We distinguish between two types

of factors, the dominating factors on a region and the

secondary factors.

C. Cost of importance

The cost of importance C is a parameter which can stop

the growth of the tree to be able to decide. To calculate this

parameter we proceed to the following equation:

C with Value(Factor) and



D. ANY2FC Model

The model is triggered when the cost of importance of the

factors start to decrease. If the dominant factors are null then

there will be no flood. The system will not be triggered if

there is less dominant factor. Here is the algorithm of the

model.

ANY2FC Procedure

Procedure ANY2FC ()

 Array Factors_List;

 Integer Factor_Type ;

 If (Number_Of_Important_ Factors () > 1) Then

 If (It’s the dominant factor) Then Factor_Type  1;

 Else Factor_Type  0;

 If (Decrease_Cost_Factor(Factor_Type, C) = True)

Then

 Machine Learning;

 Else

 No Flood;

 EndIf

 EndIf

 EndProcedure

Fig. 3. ANY2FC Procedure

This function consists of counting the number of factors that

have costs of importances in order to trigger the model.

 Number_Of_Important_ Factors Function

 Function Number_Of_Important_ Factors ()

 Number 

C  Null

Dominant_Factor  Null

Decrease_Cost  Null

Foreach Factor

 If (It’s the dominant factor on the region) Then

 C with 

Sleep (20 Seconds) ;

Dominant_Factor 

Decrease_CostDecrease_Cost_Factor

(Dominant_Factor, C);

 If (Decrease_Cost = True) Then

 Factors_List [Number] Factor ;

 Number umber + 1 ;

 EndIf

Else

 C with 

Sleep (20 Seconds) ;

Dominant_Factor 

Decrease_CostDecrease_Cost_Factor

(Dominant_Factor, C);

 If (Decrease_Cost = True) Then

 Factors_List [Number] Factor ;

 Number umber + 1 ;

 EndIf

 EndIf

 EndFor

 Return Number;

 EndFunction

Fig. 4. Number_Of_Important_ Factors Function

This function is used to test the decreasing costs of

importances of factors.

 Decrease_Cost_Factor Function

 Function Decrease_Cost_Factor (Dominant_Factor, C1)

 C2  Null

 Result False ;

 If (Dominant_Factor = 1) Then

 C2 with 

Else

 C2 with 

 EndIf
 If (C2 < C1) Then

 Result True ;

 EndIf

 Return Result;

 EndFunction

Fig. 5. Decrease_Cost_Factor Function

V. CONCLUSION & PERSPECTIVES

PC
Typewriter
210

In this paper, we have presented the ANY2FC model of

real-time flood forecasting that allows reducing the execution

time of making the decision when we have big Databases. In

addition, we have presented the Cost of importance parameter

C and how to calculate it.

In terms of perspectives, it will be studied how to identify

the dominant parameters that will be negotiated with the

forecasting system to be processed in order to give the final

decision. The studies will be based on the principle of

computational processing offline and online.

VI. REFERENCES

[1] A. Srivastava, E. Han, V. Kumar, V. Singh, 1998, "Parallel

Formulations of Decision-Tree Classification Algorithms". International
Conference on Parallel Processing (ICPP'98). pp 237.

[2] Andrew Colin, 1996, “Building Decision Trees with the ID3
Algorithm", Dr. Dobbs Journal, June 1996.

[3] Breiman, Leo, Friedman, J. H. , Olshen, R. A. , & Stone, C. J, 1984,
“Classification and regression trees, Monterey”, CA: Wadsworth &
Brooks/Cole Advanced Books & Software, ISBN 978-0412048418.

[4] J.C. Shafer, R. Agrawal, M. Mehta, "SPRINT: A Scalable Parallel
Classifier for Data Mining",Proc.of the 22th Int’l Conference on Very
Large Databases, Mumbai (Bombay), India, Sept. 1996.

[5] J.R. Quinlin. Induction of décision trees. Machine Learning, vol. 1,
pages 81 - 106, 1989.

[6] J. R. Quinlan, 1996, “Improved use of continuous attributes in C4.5” ,
Journal of Artificial Intelligence Research, Vol. 4, pp. 77-90.

[7] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman,
1993.

[8] J.R. Quinlan, Discovering rules by induction from large collections of
examples, D. Michie ed., Expert Systems in the Microelectronic age, pp.
168-201, 1979.

[9] Li_Tianrui, 2007, “Construction of Decision Trees based Entropy and
Rough Sets under Tolerance Relation”, ISKE-2007 Proceedings part of
series: Advances in Intelligent Systems Research. ISBN: 978-90-78677-
04 8.

[10] M. Mehta, R. Agrawal and J. Rissanen, “SLIQ: A Fast Scalable
Classifier for Data Mining”,Proc. ofthe Fifth Int’l Conference on
Extending Database Technology, Avignon, France, March 1996.

[11] Ricco RAKOTOMALALA. Arbres de Décision. Revue MODULAD,
2005 N 33, pages 163 - 187.

[12] Shlomo Zilberstein, “Using Anytime Algorithmsin Intelligent Systems”.
FALL, 1996 N 73, pages 73 - 83.

[13] Xin dong Wu,Vipin Kumar ,J.Ross Quinlan, Joydeep Ghosh,Qiang
Yang, Hiroshi Motoda, 2007 , ”Top 10 algorithms in data mining“ ,
Spinger- Verlag London Limited ,pages 20 -28.

[14] Mehta, M., Agrawal, R., and Rissanen, J. (1995). MDL-based
decision tree pruning. International conference on knowledge
discovery in databases and data mining (KDD-95) Montreal, Canada

PC
Typewriter
211

