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Abstract— In a Decision Support System (DSS), a computer 

system must allow the decision maker to make the best possible 

decision, often before a given time. The objective of our project is 

to extend the notion of flood forecasting in an environment 

constrained by time, it means to consider the real-time aspects of 

a forecast DSS. To design such a system, we opted for the use of 

“Anytime techniques” that aimed at giving information systems 

the possibility to provide results which quality and accuracy 

evolve according to a given time. In this paper, we suggest 

ANY2FC (Anytime Flood Forecasting), a model of real-time 

flood forecasting based on Anytime techniques. 

 

Keywords— flood ; forecasting ; real-time ; decision tree ; 

machine Learning ; Anytime algorithm. 

 

I. INTRODUCTION 

The growth of natural and technological hazards is a 

worldwide phenomenon that comes as a result of the 

industrialization and the increasing  density of occupation of 

risk areas, prone to hazards or hazardous events. Risks, 

therefore, pose a global challenge for the future and they’re 

one of the major problems that sustainable development may 

face. 

 

In terms of natural hazards, Morocco, by its geographical 

location, is exposed to climatic, meteorological, geological and 

biological changes which may lead to major risks such as 

floods, flash floods, earthquakes and landslides etc. 

 

 Here comes the need for a kind of decision support in 

doing the real-time flood forecasting which may give the 

opportunity to decide before the normal end of treatment 

because the current algorithms don’t provide the answer until 

the end of treatment. The former  will ensure the quality of the 

decision accuracy of data, the speed of learning time and  the 

execution and response. Therefore, in this paper, we propose a 

new algorithm that optimizes the execution time, the precision 

of the decision and response time.We based our approach  on 

Anytime algorithms to produce partial decisions before the end 

of treatment trees. 

II. STATE OF ART OF THE ALGORITHMS OF CONSTRUCTING THE 

DECISION TREES 

The majority of algorithms dealing with decision trees 

construction follow the same principles; with exceptions 

concerning the ability of each to provide binary trees or n-ary, 

the processing capacity of input attributes in terms of density 

and quality of accuracy. 

  

Some algorithms are characterized by the rapidity of 

providing answers on small samples such as CART, some are 

characterized by quick decisions regarding means samples 

such as C4.5 and ID3 while others are characterized by their 

rapidity of large samples as CHAID.  

 

The problem of these algorithms is that their performance 

decreases when the size of the database processed and the 

number of classes increase. 

In the next section, we present the basic decision 

algorithms make in literature. 

A. Classification and Regression Trees (CART) 

 
CART (Classification and Regression Trees), is 

characterized by the fact that it constructs binary trees, namely 
each internal node has exactly two outgoing edges whereas 
both ID3, C4.5 algorithms generate the decision trees with 
variable branches per node. CART is unique from other 
Hunt’s based algorithm as it is also used for regression 
analysis with the help of regression trees. The regression 
analysis feature is used in forecasting a dependent variable 
(result) given a set of predictor variables over a given period 
of time. The CART decision tree is a binary recursive 
partitioning procedure capable of processing continuous and 
nominal attributes both as targets and predictors. In CART 
trees are grown, using genie index for splitting procedure, to a 
maximum size without the use of a stopping rule and then 
pruned back (essentially split by split) to the root via cost-
complexity pruning. The CART mechanism is intended to 
produce not one, but a sequence of nested pruned trees, all of 
which are candidate optimal trees. The CART mechanism 

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.1, pp. 207-211, 2013

Copyright - IPCO 

PC
Typewriter
207



includes automatic (optional) class balancing, automatic 
missing value handling, and allows for cost-sensitive learning, 
dynamic feature construction, and probability tree estimation. 

B. Iterative Dichotomiser 3 (ID3) 

ID3 (Iterative Dichotomized) algorithm is based on the 

Concept of Learning System (CLS) algorithm. CLS algorithm 

is the basic algorithm for decision tree learning. The tree 

growth phase of CLS is the matter of choosing attribute to test 

each node by the trainer. ID3 improves CLS by adding a 

heuristic for attribute selection. ID3 is based on Hunt’s 

algorithm and is implemented serially. This algorithm 

recursively partitions the training dataset till the record sets 

belong to the class label using depth first greedy technique. In 

growth phase of the tree construction, this algorithm uses 

information gain, an entropy based measure, to select the best 

splitting attribute, and the attribute with the highest 

information gain is selected as the splitting one. ID3 doesn’t 

give accurate result when there is too much noise or details in 

the training data set, thus an intensive pre-processing of data 

is carried out before building a decision tree model with ID3. 

One of the main drawbacks of ID3 is that the measure Gain 

used tends to favor attributes with a large number of distinct 

values. It accepts only categorical attributes in building a tree 

model from which algorithm generates various branches per 

node. 

C. C4.5 

C4.5 algorithm is an improved version of ID3, it uses 

Gain Ratio as a splitting criteria, instead of taking gain in ID3 

algorithm for splitting criteria [14] in tree growth phase. 

Hence C4.5 is an evolution of ID3. This algorithm handles 

both continuous and discrete attributes- In order to handle 

continuous attributes, C4.5 creates a threshold and then splits 

the list into those whose attribute value is above the threshold 

and those that are less than or equal to it. Like ID3 the data is 

sorted at every node of the tree in order to determine the best 

splitting attribute. The splitting ceases when the number of 

instances to be split is below a certain threshold. The main 

advantages of C4.5 is when building a decision tree, C4.5 can 

deal with datasets that have patterns with unknown attribute 

values. C4.5 can also deal with the case of attributes with 

continuous domains by discretization. This algorithm handles 

training data with attribute values by allowing attribute values 

to be marked as missing. Missing attribute values are simply 

not used in gain and entropy calculations. It has an enhanced 

method of tree pruning that reduces misclassification errors 

due to noise or too much detail in the training data set. 

D. Scalable Parallelizable Induction of decision Tree 

algorithm (SPRINT) 

 
SPRINT (Scalable Parallelizable Induction of decision 

Tree algorithm) was introduced by Shafer et al, 1996. It is a 
fast, scalable decision tree classifier. It is not based on Hunt’s 

algorithm in constructing the decision tree, rather it partitions 
the training data set recursively using breadth-first greedy 
technique until each partition belong  to the same leaf node or 
class (Anyanwu et al, 2009 and Shafer et al, 1996). It is an 
enhancement of SLIQ as it can be implemented in both serial 
and parallel pattern for good data placement andload 
balancing (Shafer et al, 1996).  In this paper we will focus on 
the serial implementation of SPRINT. Like SLIQ it uses one 
time sort of the data items and it has no restriction on the input 
data size. Unlike SLIQ it uses two data structures: attribute list 
and histogram which is not memory resident making SPRINT 
suitable for large data set, thus it removes all the data memory 
restrictions on data (Shafer et al, 1996). It handles both 
continuous and categorical attributes. 

III. EXPERIMENTAL RESULTS AND COMPARATIVE STUDIES 

A. Study domain 

To compare the algorithm’s performance of construction 

of the decisions trees, we conducted five experiments, each 

time increased the number of records, the number of classes 

and the number of attributes in order to identify problems that 

may appears during execution. Here is the table that shows the 

experiences already realized. 

TABLE I.  STATLOG AREA 

 No. of attributes No. of classes No. of records 

E1 24 2 270 

E2 11 4 690 

E3 8 2 753 

E4 6 2 1000 

E5 4 7 10500 

 

B. Results 

TABLE II.  EXECUTION TIME TO BUILD MODEL 

 ID3 CART C4.5 SPRINT 

E1 0.12secs 0.61secs 0.05secs 0.03secs 

E2 0.31secs 1.64secs 0.23secs 0.15secs 

E3 0.47secs 2.17secs 0.35secs 0.26secs 

E4 1.08secs 11.41secs 0.52secs 0.41secs 

E5 2.08secs 38.31secs 1.17secs 0.89secs 

TABLE III.  CLASSIFICATION ACCURACY 

 ID3 CART C4.5 SPRINT 

E1 35.2% 56.67% 76.7% 80% 

E2 54.3% 65% 66.5% 67% 

E3 32.1 % 70 % 69.2 % 70 % 

E4 71.5 % 85.4 % 84.2 % 85.8 % 

E5 99.2 % 94 % 98.00 % 99.63 % 
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Table II shows that SPRINT classifiers have the fastest 

execution time among all the classifiers, regardless of the 

class size, number of attributes and records of the data sets 

volume. This is closely followed by C4.5. The table also 

showed that execution time for ID3 is faster than CAR. 

However, CART is preferred by researches and scientists as it 

handles both categorical and continuous attributes while ID3 

does not.  

 

Table III shows that SPRINT classifier has the highest 

classification accuracy among all the classifiers, this is 

followed by C4.5. The class size, attribute number and record 

number do not affect the classification accuracy of SPRINT 

and C4.5 compared to other classifiers. The classification 

accuracy of the ID3 and CART classifiers depends to a large 

extent on the class size, attribute number and record number 

of the data sets.  

 

As shown in Table III for a large data set, the classification 

accuracy of ID3 is better than that of CART as ID3 has a high 

accuracy for large data that have been pre-processed and 

loaded into the memory at the same time. But for small-

medium data, the classification accuracy of CART is more 

accurate than that of ID3.  
 

C. Synthesis 

 

 

Fig. 1. Execution Time and Number of Records 

 

Fig. 2. Execution Time and Number of Attributes 

 

Figure 1. shows that for all the classifiers, the execution 

time increases as the number of records increases. The steady 

portion of the graph is the effect of varying the number of 

attributes of the classifiers. Also Figure 2. shows that the 

execution time (time to build the model) of the classifiers 

decreases as the attributes of the classifiers increases and 

becomes steady at some point, due to the change in the 

number of records of the data sets and also class size change. 

IV. ANY2FC (ANYTIME FLOOD FORECASTING) MODEL 

The algorithms of construction of the decision trees 

existing in the literature requires the end of learning (the end 

of construction of the tree) to give a decision, which according 

to the experimental studies already conducted, as the number 

of records and classes increases, the execution time also 

increases, hence the necessity to stop the construction and 

give partial decisions which may be the final one, is essential. 

Anytime algorithms provide us this possibility. 

A. Anytime algorithms 

Anytime algorithm is an algorithm that can find a valid 

solution to a problem even if it's interrupted at any time before 

it ends. The algorithm is expected to find better solutions as 

long as it keeps running. Most algorithms run to completion: 

they provide a single answer after performing some fixed 

amount of computation.  

However, in some cases, the user may wish to terminate 

the algorithm prior to completion. The amount of the 

computation required may be substantial, for example, and 

computational resources might need to be reallocated. Most 

algorithms either run to completion or they provide no useful 

solution information. Anytime algorithms, however, are able 

to return a partial answer, according to the quality which 

depends on the amount of computation they were able to 

perform. The answer generated by anytime algorithms is an 

approximation of the correct answer. 

B. New proposed Model ANY2FC 

According to the synthesis already presented on the 

experimental study, the execution time of the algorithms 

increases when the number of records is larger and the number 

of attributes is smaller. 

 

Projecting that’s already seen on our application domain 

which is flooding, according to the large number of records 

with a small number of attributes in this scope, you can’t use 

any of the existing algorithms in the literature, so you should 

have an optimal solution that takes into consideration these 

two constraints. Here comes the need to suggest a new 

algorithm which is based on the latter. In the following section, 

we present the ANY2FC Model for real-time forecasting of 

floods. 
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ANY2FC (Anytime Flood Forecasting) is a model based 

on the Anytime’s concept to interrupt the treatment before its 

normal end in order to provide a decision about the impact of 

flooding. The quality of the decision depends on the quality of 

the precised shaft portion built in order to save execution time 

and response to lead to the notion of real-time forecasting. 

 

This model will be based on a parameter called the cost of 

importance of a factor. Factors are the parameters leading to 

the incidence of flooding. We distinguish between two types 

of factors, the dominating factors on a region and the 

secondary factors. 

C. Cost of importance 

The cost of importance C is a parameter which can stop 

the growth of the tree to be able to decide. To calculate this 

parameter we proceed to the following equation: 

C with Value(Factor) and 


 

D. ANY2FC Model 

The model is triggered when the cost of importance of the 

factors start to decrease. If the dominant factors are null then 

there will be no flood. The system will not be triggered if 

there is less dominant factor. Here is the algorithm of the 

model. 

 

 

ANY2FC Procedure 

 

Procedure ANY2FC () 

    Array Factors_List; 

    Integer Factor_Type ; 

    If ( Number_Of_Important_ Factors () > 1 ) Then 

    If ( It’s the dominant factor ) Then Factor_Type  1; 

    Else Factor_Type  0; 

         If (Decrease_Cost_Factor(Factor_Type, C) = True ) 

Then 

               Machine Learning; 

    Else 

         No Flood; 

    EndIf 

     EndIf 

 EndProcedure 

 

Fig. 3. ANY2FC Procedure 

This function consists of counting the number of factors that 

have costs of importances in order to trigger the model. 

 

 

      Number_Of_Important_ Factors Function 

 

      Function Number_Of_Important_ Factors () 

           Number 

C  Null

Dominant_Factor  Null

Decrease_Cost  Null

Foreach Factor 

                 If ( It’s the dominant factor on the region ) Then 

                     C with 

Sleep (20 Seconds) ; 

Dominant_Factor 

Decrease_CostDecrease_Cost_Factor 

(Dominant_Factor, C); 

                     If ( Decrease_Cost = True ) Then 

                           Factors_List [Number] Factor ; 

                           Number umber + 1 ; 

                     EndIf 

Else 

                     C with 

Sleep (20 Seconds) ; 

Dominant_Factor 

Decrease_CostDecrease_Cost_Factor 

(Dominant_Factor, C); 

                     If ( Decrease_Cost = True ) Then 

                           Factors_List [Number] Factor ; 

                           Number umber + 1 ; 

                     EndIf 

                 EndIf 

           EndFor 

           Return Number; 

      EndFunction 

 

Fig. 4. Number_Of_Important_ Factors Function 

This function is used to test the decreasing costs of 

importances of factors. 

 

 

 

     Decrease_Cost_Factor Function 

 

     Function Decrease_Cost_Factor (Dominant_Factor, C1) 

          C2  Null 

          Result False ; 

          If (Dominant_Factor = 1 ) Then 

               C2 with 

Else 

               C2 with  

          EndIf 
          If ( C2 < C1 ) Then 

               Result True ; 

          EndIf 

          Return Result; 

     EndFunction 

 

Fig. 5. Decrease_Cost_Factor Function 

V. CONCLUSION & PERSPECTIVES 
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In this paper, we have presented the ANY2FC model of 

real-time flood forecasting that allows reducing the execution 

time of making the decision when we have big Databases. In 

addition, we have presented the Cost of importance parameter 

C and how to calculate it.  

In terms of perspectives, it will be studied how to identify 

the dominant parameters that will be negotiated with the 

forecasting system to be processed in order to give the final 

decision. The studies will be based on the principle of 

computational processing offline and online. 
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